Enantioselective Total Synthesis of (+)-(2*R*,6*R*)-*trans*-*γ*-Irone

Honoré Monti, *,† Gérard Audran, † Jean-Pierre Monti, ‡ and Gilbert Leandri †

Laboratoire de Réactivité Organique Sélective associé au CNRS, Faculté des Sciences de St-Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, and Laboratoire de Biophysique, Faculté de Pharmacie, 80037 Amiens, France

Received February 27, 1996

The natural occurrence of *trans*- γ -irone (1) has recently been demonstrated.¹ Four synthetic routes to the racemate (±)-1 can be found in the literature,² but only one route for (+)-(2*R*,6*R*)-1 and one for (-)-(2*S*,6*S*)-1 have been reported.^{3,4} These two enantioselective syntheses offer only a moderate enantiomeric excess and lack complete stereo- and/or regioselectivity. In the first synthetic approach, (+)-1 has to be isolated from its *Z*-isomer (~5:1) by chromatography, and, in the second, (-)-1 is obtained as a 1:3 mixture containing a majority of (+)-*trans*- α -irone-**2**.

^a Numbering follows IUPAC rules for nomenclature of carotenoids. We use it only when referring to irones.

We report herein a straightforward enantioselective synthesis of (+)-1 starting from (+)-(R)-3,4-dimethylcyclohex-2-en-1-one, (+)-3, based on the H-ene reaction of butynone with a cyclohexenic allyltrimethylsilane⁵⁻⁷ (Scheme 1). The readily available⁸ enone (+)-3 was converted into the cyclic diethyl enol phosphate (+)-4 in 92% yield by the 1,4-addition of dimethylcyanocuprate Me₂Cu(CN)Li₂, followed by quenching with diethylchlorophosphate in hexamethylphosphoric triamide.⁹ The nickel acetylacetonate-catalyzed reaction of (+)-4 with (trimethylsilyl)methylmagnesium chloride gave trimeth-

(2) (a) Garnero, J.; Joulain, D. Bull. Soc. Chim. Fr. **1979**, 15. (b) Kitahara, T.; Tanida, K.; Mori, K. Agric. Biol. Chem. **1983**, 47, 581. (c) Takazawa, O.; Kogami, K.; Hayashi, K. Bull. Chem. Soc. Jpn **1985**, 58, 389. (d) Levendecker, F.; Comte, M.-T. Tetrahedron **1987**, 43, 85.

58, 389. (d) Leyendecker, F.; Comte, M.-T. *Tetrahedron* 1987, 43, 85.
 (3) Miyashita, M.; Makino, N.; Singh, M.; Yoshikoshi, A. J. Chem. Soc., Perkin Trans. 1 1982, 1303.

(4) Helmlinger, D.; Fráter, G. *Helv. Chim. Acta* 1989, *72*, 1515.
 (5) Audran, G.; Monti, H.; Léandri, G.; Monti, J.-P. *Tetrahedron Lett.* 1993. *34*, 3417.

(6) For ene reaction of butynone with alkenes, see: Snider, B. B.; Brown, L. A.; Eichenconn, R. S.; Killinger, T. A. *Tetrahedron Lett.* **1977**, *33*, 2831. For closely related electron-deficient alkynes as enophiles, see: (a) Mikami, K.; Loh, T.-P.; Nakai, T. *J. Chem. Soc., Chem. Commun.* **1988**, 1430. (b) Snider, B. B. In *Comprehensive Organic Synthesis Vol. 5*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; pp 1–27 and references therein. (c) Dang, H.-S.; Davies, A. G. *J. Chem. Soc., Perkin Trans. 2* **1991**, 721. (d) Mikami, K.; Shimizu, M. *Chem. Rev.* **1992**, *92*, 1021.

(7) Thermal ene reactions with allylsilanes. For a review, see: Dubac, J.; Laporterie, A. *Chem. Rev.* **1987**, *87*, 319 and references therein. See also: (a) Imazu, S.; Shimizu, N.; Tsuno, Y. *Chem. Lett.* **1990**, 1845. (b) Cai, J.; Davies, A. G. *J. Chem. Soc., Perkin Trans. 2* **1992**, 1743. Lewis acid-promoted ene reactions with allylsilanes: (a) Mikami, K.; Matsukawa, S. *Tetrahedron Lett.* **1994**, *35*, 3133. (b) Aoki, S.; Mikami, K.; Terada, M.; Nakai, T. *Tetrahedron* **1993**, *49*, 1783. Scheme 1^a

^a Reagents: (a) $Me_2Cu(CN)Li_2$, Et_2O , then $ClPO(OEt)_2/HMPA$ (92%); (b) Me_3SiCH_2MgCl , $Ni(acac)_2$, THF (85%); (c) butynone, ZnI₂, 4 Å molecular sieves, CH_2Cl_2 (83%); (d) catalytic TsH, CH₃CN (82%); (e) butynone, Me_2AlCl , CH_2Cl_2 (93%); (f) TiCl₄, CH_2Cl_2 (93%).

yl[(3,3,4-trimethylcyclohex-1-enyl)methyl]silane (+)-5 in 85% yield. $^{9\mathrm{b}}$

In a first attempt, based on analogy with the literature,⁴ the ZnI₂-catalyzed H-ene reaction of (+)-**5** with but-3-yn-2-one was investigated. This reaction furnished a mixture of two main products (**6** + **7**) and small amounts (9:1) of isomeric derivatives, showing that, prior to the H-ene reaction, a partial isomerization must have taken place.¹⁰ To avoid the formation of these unwanted isomers, we ran a new experiment in the presence of 4 Å

(8) Obtained in two steps from (+)-(2R,5R)-trans-dihydrocarvone, conveniently separated by column chromatography from its minor *cis* isomer starting from the commercial Aldrich mixture (hexane/ether 6:1).

(a) Ozonolysis in methanol and then treatment with $Cu(OAc)_2/FeSO_4$ led to (+)-(R)-6-methylcyclohex-2-en-1-one (Solladié, G.; Hutt, J. J. Org. Chem. **1987**, 52, 3560). (b) Treatment of this ketone with methyllithium, followed by oxidation with pyridinium chlorochromate (PCC), afforded (+)-3 (Iio, H.; Monden, M.; Okada, K.; Tokoroyama, T. J. Chem. Soc., Chem. Commun. **1987**, 358. See also: Dauben, W. G.; Michno, D. M. J. Org. Chem. **1977**, 42, 682).

Michno, D. M. J. Org. Chem. 1977, 42, 682).
(9) (a) Hayashi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada,
M. Synthesis 1981, 1001. (b) Danishefsky, S. J.; Mantlo, N. J. Am. Chem. Soc. 1988, 110, 8129.

(10) In ¹H NMR, these rearranged products, which we did not investigate fully, were characterized by a multiplet (bis-allylic hydrogen) at 2.90 ppm.

The same isomerization has been reported using $ZnCl_2\ or\ ZnBr_2$ as Lewis acid and starting from a substituted cyclohexene. 4

[†] Faculté des Sciences de St-Jérôme.

[‡] Faculté de Pharmacie.

⁽¹⁾ Rautenstrauch, V.; Willhalm, B.; Thommen, W.; Ohloff, G. Helv. Chim. Acta 1984, 67, 325.

molecular sieves (zeolite), which can serve as cation exchangers.¹¹ As expected, the reaction furnished cleanly the inseparable mixture 6/7 (4:1) as the sole products in 83% yield. The regioselectivity of the H-ene reaction and the *trans* relationship between the substituents could be established by NMR spectroscopy. Recourse to NOESY experiments established the absolute configuration and conformation of 6 and 7. For the major allylsilane 6, the NOESY plots were characterized by strong cross-peaks between H_4 and $H_{5'}$ (Chart 1, **A**). Accordingly, this pair of protons must reside in close proximity; this is uniquely accommodated by A. The preference of molecules related to 6 (or 7) to adopt a conformation with a pseudoaxial side chain has been reported in the literature.^{2d,4,12} In the same experiment, the NOE effect for vinylic $H_{7'}$ and equatorial $H_{5'}$ (Chart 1, **B**) established the Z configuration of the double bond in the minor vinylsilane 7. Further, heating the mixture (6 + 7) in acetonitrile with a catalytic amount of p-toluenesulfinic acid (TsH), according to the procedure described in the literature for protodesilylation of vinylsilanes,¹³ provided (+)-*trans*- γ -irone (1) as the only product in 82% yield (Scheme 1, path a).

Next, we envisaged that dimethylaluminum chloride (Me₂AlCl), which is a mild Lewis acid and a proton scavenger,¹⁴ would be an ideal catalyst for the H-ene reaction. In agreement with our expectation, (+)-5 reacted cleanly at low temperature (-30 °C) with but-3-yn-2-one, furnishing the desired H-ene adduct as the single regioisomer (-)-6 in 93% yield. Isocyclic core allylsilanes suffer ready protodesilylation with a Lewis acid like TiCl₄ before all further reactions.¹⁵ Indeed, this generally unwanted parasite reaction, applied to all visibiliane (-)-6. provided (+)-1 in 93% yield (Scheme 1, path b). Remarkably, this protodesilylation proceeded without any further isomerization of the exocyclic double bond, and a single diastereomer was detected by capillary GC. The high optical purity of (+)-(2R,6R)-1 was verified by HPLC (column, Chiralcel OD-H, 25 cm \times 0.46 cm, i.d.), and the $[\alpha]^{25}_{D}$ +59.4 (c = 1.2, CH₂Cl₂) is in good agreement with the literature value,⁴ which is $[\alpha]^{25}_{D}$ –43.3 (*c* = 0.8, CH_2Cl_2) for (–)-**1** with a reported 70% ee.

In conclusion, the first complete enantioselective total synthesis of (+)-(2R,6R)-*trans*- γ -irone ((+)-**1**) has been

achieved by a short four-step procedure, giving an overall yield of 68% starting from (+)-**3** (Scheme 1, path b). In addition, starting from (-)-**3**,¹⁶ this synthetic pathway formally constituted synthesis of (-)-(2.*S*,6.*S*)-*trans*- γ -irone.

Experimental Section

For analytical thin-layer chromatography, Merck silica gel F-254 on aluminum plates was used. Column chromatography was performed with Silica gel 60 (70-230 mesh) using mixtures of diethyl ether and pentane as eluant. Chiral HPLC analyses were performed on Analprep EC 93 (column, Chiralcel OD-H 25 cm \times 0.46 cm i.d.). GC analyses were carried out on a Chrompack 9001 using a WCOT fused silica column (25 m \times 0.32 mm i.d.; CP-Wax-52 CB stationary phase). Microanalyses were performed on a Technicon CHN analyzer at our University. Infrared spectra were recorded on a Perkin-Elmer 257 spectrometer. NMR spectra were recorded at 200 or 300 MHz for ¹H and 50 or 75.5 MHz for ¹³C on a Bruker AM-200 or Bruker AC-300 spectrometer with CDCl₃ as solvent (Bruker AM-400 for NOESY experiments). Chemical shifts (δ) are relative to tetramethylsilane as internal standard. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Unless otherwise stated, solutions were dried with magnesium sulfate and evaporated in a rotary evaporator under reduced pressure.

Diethyl (+)-(4R)-(3,3,4-Trimethylcyclohex-1-en-1-yl)phosphoric Triester ((+)-4). To a stirred suspension of copper(I) cyanide (3.76 g, 42.0 mmol) in dry ether (100 mL) at -30 °C was added dropwise MeLi (1.5 M in ether, 56.0 mL, 84.0 mmol) under Ar atmosphere. The mixture was stirred for 1 h at -20 °C and cooled to -78 °C, and then (+)-3 (1.74 g, 14.0 mmol) in ether (10 mL) was added dropwise. The reaction mixture was slowly warmed to -30 °C and stirred at this temperature for 1 h, and then a mixture of ClPO(OEt)₂ (6.1 mL, 42.0 mmol) and HMPA (7.3 mL, 42.0 mmol) in THF (10 mL) was added dropwise. The solution was allowed to rise to rt, stirred for 12 h and then poured into a saturated aqueous NH₄Cl/NH₄OH solution (100 mL) and extracted with ether (3 \times 60 mL). The organic layers were combined, washed with 50 mL of brine, dried, and evaporated. The oily residue was subjected to column chromatography on silica gel (pentane/ether 2:1) to afford 3.56 g (92%) of (+)-**4**. $[\alpha]^{25}_{\rm D}$ +33.4 (c = 1.8, CHCl₃). IR (neat): ν 3060, 1690, 1280, 1040, 980, 810 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃): δ 0.84 (s, 3H), 0.87 (d, J = 6.4 Hz, 3H), 0.99 (s, 3H), 1.30 (td, J = 7.1, 1.0 Hz, 6H), 1.37-1.69 (m, 3H), 2.02-2.33 (m, 2H), 4.10 (dq, J = 7.9, 7.1 Hz, 4H), 5.20 (br s, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ 14.8, 15.5 (d, J = 6.1 Hz), 22.5, 27.0, 28.7, 34.1, 37.1, 63.5 (d, J = -5.8 Hz), 121.3 (d, J = 4.9 Hz), 145.9 (d, J = -9.1 Hz). Anal. Calcd for C13H25O4P: C, 56.51; H, 9.12. Found: C, 56.62; H. 9.15.

(+)-(4R)-Trimethyl[(3,3,4-trimethylcyclohex-1-en-1-yl)methyl]silane ((+)-5). To a stirred mixture of enol phosphate (+)-4 (2.76 g, 10 mmol) and Ni(acac)₂ (257 mg, 1.0 mmol) in THF (50 mL) was added 0.25 equiv of a 1 M ethereal solution of (trimethylsilyl)methylmagnesium chloride (2.5 mL, 2.5 mmol) at rt. This addition process was repeated every 1 h for a total of 11 h of reaction time and 2.5 equiv of Grignard reagent (25 mL, 25 mmol). The reaction was quenched with 50 mL of a 20% aqueous NH₄Cl solution and stirred for 45 min. After extractive workup with ether (3 \times 50 mL), the organic layers were combined, washed with 50 mL of brine, dried, and evaporated. Purification by chromatography on silica gel (pentane) afforded 1.79 g (85%) of (+)-5. $[\alpha]^{25}_{D}$ +52.3 (*c* = 2.0, CHCl₃). IR (neat): ν 3030, 1660, 1255, 850 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃): δ 0.04 (s, 9H), 0.83 (s, 3H), 0.91 (d, J = 6.1 Hz, 3H), 0.99 (s, 3H), 1.41 (s, 2H), 1.37-1.59 (m, 3H), 1.75-2.05 (m, 2H), 4.95 (br s, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ –1.4, 15.9, 23.2, 27.3, 28.2, 29.6, 31.1, 34.7, 38.1, 131.4, 132.2. Anal. Calcd for C13H26Si: C, 74.20; H, 12.45. Found: C, 74.32; H, 12.41

(1'*R*,5'*R*,3*E*)-4-(5',6',6'-Trimethyl-2'-[(trimethylsilyl)methyl]cyclohex-2'-en-1'-yl)but-3-en-2-one and (1'*R*,3'*R*,3*E*)-4-(2',2',3'-Trimethyl-(*Z*)-6'-[(trimethylsilyl)methylidene]cyclohex-1'-yl)but-3-en-2-one (6 + 7). A suspension of allylsilane (+)-5 (421 mg, 2.0 mmol), anhydrous ZnI_2 (958 mg, 3.0 mmol),

^{(11) (}a) Thomas, J. M.; Theocaris, C. R. In *Modern Synthetic Methods*, Scheffold, R., Ed.; Springer Verlag: Berlin, 1989; p 249. (b) Dyer, A. In *An Introduction to Zeolite Molecular Sieves*, Wiley: Chichester, 1988. (c) Temme, O.; Laschat, S. *J. Chem. Soc., Perkin Trans.* 1 1995, 125.

⁽¹²⁾ Torii, S.; Uneyama, K.; Matsunami, S. J. Org. Chem. 1980, 45, 16.

⁽¹³⁾ Buchi, G.; Wuest, H. Tetrahedron Lett. 1977, 4305.

^{(14) (}a) Snider B. B. Acc. Chem. Res. 1980, 13, 426. (b) Snider, B. B.; Rodini, D. J.; Karras, M.; Kirk, T. C.; Deutsch, E. A.; Cordova, R.; Price, R. T. Tetrahedron 1981, 37, 3927. (c) Snider, B. B.; Rodini, D. J.; Kirk, T. C.; Cordova, R. J. Am. Chem. Soc. 1982, 104, 555. (d) Cartaya-Marin, C. P.; Jackson, A. C.; Snider, B. B. J. Org. Chem. 1984, 49, 2443. (e) Snider, B. B. In Selectivities in Lewis Acid Promoted Reactions; Schinzer, D., Ed.; Kluwer Academic Publishers: London, 1989; p 147.

⁽¹⁵⁾ Monti, H.; Feraud, M. Synth. Commun., in press.

⁽¹⁶⁾ Prepared like (+)-**3** starting from (-)-(2*S*,5*S*)-*trans*-dihydrocarvone (Hua, D. H.; Venkataraman, S. *J. Org. Chem.* **1988**, *53*, 1095).

powdered 4 Å molecular sieves (0.6 g), and butynone (204 mg, 3.0 mmol) in anhydrous CH₂Cl₂ (10 mL) was stirred at rt for 12 h under Ar atmosphere. After filtration and removal of the solvent, the residue was chromatographed on silica gel (pentane/ ether 20:1) to afford 462 mg (83%) of a ~4:1 inseparable mixture of **6** and **7** (based on capillary GC and integration of ¹H NMR peaks). Anal. Calcd for C₁₇H₃₀OSi (**6** + **7**): C, 73.31; H, 10.86. Found: C, 73.46; H, 10.90.

6. ¹H-NMR (300 MHz, CDCl₃): δ -0.08 (s, 9H), 0.72 (d, J = 6.5 Hz, 3H), 0.76 (s, 3H), 0.77 (s, 3H), 1.15 and 1.37 (AB, J = -17.0 Hz, 2H), 1.52-1.72 (m, 2H), 1.91-2.15 (m, 1H), 2.18 (s, 3H), 2.19 (d, J = 9.3 Hz, 1H), 5.20-5.25 (m, 1H), 5.92 (d, J = 15.8 Hz, 1H), 6.58 (dd, J = 15.8, 9.3 Hz, 1H). ¹³C-NMR (75.5 MHz, CDCl₃): δ -1.1, 14.9, 20.9, 25.6 , 26.5, 26.6, 31.6, 32.3, 35.4, 56.5, 120.9, 132.5, 133.4, 148.9, 198.2.

7. ¹H-NMR (300 MHz, CDCl₃): δ 0.02 (s, 9H), 0.70 (d, J = 6.6 Hz, 3H), 0.71 (s, 3H), 0.85 (s, 3H), 2.07–2.15 (m, 1H), 2.17 (s, 3H), 2.38 (tdd, J = 12.4, 5.0, 2.0 Hz, 1H), 2.84 (d, J = 7.6 Hz, 1H), 5.23–5.28 (m, 1H), 6.01 (dd, J = 15.8, 1.1 Hz, 1H), 7.00 (dd, J = 15.8, 7.6 Hz, 1H). ¹³C-NMR (75.5 MHz, CDCl₃): δ 0.5, 15.5, 20.6, 27.1, 27.6, 31.9, 35.9, 36.5, 38.2, 58.0, 125.9, 132.0, 147.0, 156.2, 197.9.

(-)-(1'*R*,5'*R*,3*E*)-4-(5',6',6'-Trimethyl-2'-[(trimethylsilyl)methyl]cyclohex-2'-en-1'-yl)but-3-en-2-one ((-)-6). To a stirred, cooled (-30 °C) solution of allylsilane (+)-5 (421 mg, 2.0 mmol) and butynone (150 mg, 2.2 mmol) in anhydrous CH_2Cl_2 (10 mL) was added dropwise Me₂AlCl (1 M solution in CH_2Cl_2 , 2.4 mL, 2.4 mmol) under Ar atmosphere. After 20 min at this temperature, the reaction mixture was poured into a saturated aqueous NaHCO₃ solution (20 mL) and extracted with CH_2Cl_2 (3 × 30 mL). The organic layers were combined, washed with brine (30 mL), dried, and evaporated. The residue was purified by chromatography (pentane/ether 20:1), which gave 518 mg (93%) of pure (-)-6. $[\alpha]_{25}^{25}$ -170.3 (c = 1.9, CHCl₃). IR (neat): ν 3040, 1690, 1680, 1630, 1250, 850 cm⁻¹. Anal. Calcd for C₁₇H₃₀OSi: C, 73.31; H, 10.86. Found: C, 73.43; H, 10.89. (For ¹H- and ¹³C-NMR, see above). (+)-(1'*R*,3'*R*,3*E*)-4-(2',2',3'-Trimethyl-6'-methylidenecyclohex-1'-yl)but-3-en-2-one [(+)-(2*R*,6*R*)-*trans*- γ -Irone, (+)-1]. (i) Using *p*-Toluenesulfinic Acid. To a solution of 6 + 7 (278 mg, 1.0 mmol) and *p*-toluenesulfinic acid (31 mg, 0.2 mmol) in 10 mL of CH₂Cl₂ was added one drop of water, and the mixture was refluxed for 3 h. After cooling to rt, the reaction mixture was quenched with H₂O (15 mL) and extracted with CH₂Cl₂ (2 × 20 mL). The organic layers were combined, dried, and evaporated. The residue was chromatographed (pentane/ ether 15:1) to afford 170 mg (82%) of pure (+)-1.

(ii) Protodesilylation with TiCl₄. To a stirred, cooled (-70 °C) solution of (-)-6 (278 mg, 1.0 mmol) in anhydrous CH₂Cl₂ (10 mL) was added dropwise TiCl₄ (1 M solution in CH₂Cl₂, 3.0 mL, 3.0 mmol). TLC monitoring showed the total disappearance of (-)-6 after 1 h. The reaction mixture was then poured into a saturated aqueous NaHCO₃ solution (20 mL) and extracted with CH_2Cl_2 (2 \times 30 mL). The organic layers were combined, dried, and evaporated to afford a residue, from which (+)-1 (192 mg, 93%) was obtained pure after chromatography (pentane/ether 15:1). $[\alpha]^{25}_{D}$ +59.4 (c = 1.2, CH₂Cl₂). IR (neat): ν 3060, 1680, 1650, 1620, 990, 895 cm⁻¹. ¹H-NMR (200 MHz, CDCl₃): δ 0.80 (s, 3H), 0.85 (d, J = 6.6 Hz, 3H), 0.88 (s, 3H), 1.20–1.40 (m, 1H), 1.50-1.75 (m, 2H), 2.15-2.25 (m, 2H), 2.24 (s, 3H), 2.61 (d, J = 8.9 Hz, 1H), 4.66 (br s, 1H), 4.71 (br s, 1H), 6.06 (d, J =15.8 Hz, 1H), 7.05 (dd, J = 15.8, 8.9 Hz, 1H). ¹³C-NMR (50 MHz, $CDCl_3$): δ 15.4, 21.3, 26.9, 27.2, 31.3, 36.2, 37.6, 59.4, 110.3, 131.8, 147.3, 147.8, 198.3. Anal. Calcd for C14H22O: C, 81.50; H, 10.75. Found: C, 81.55; H, 10.72.

Acknowledgment. The authors acknowledge Dr. R. Faure for running NOESY experiments and Dr. G. Gil for running chiral HPLC analyses.

JO960392L